1 - Le grandezze

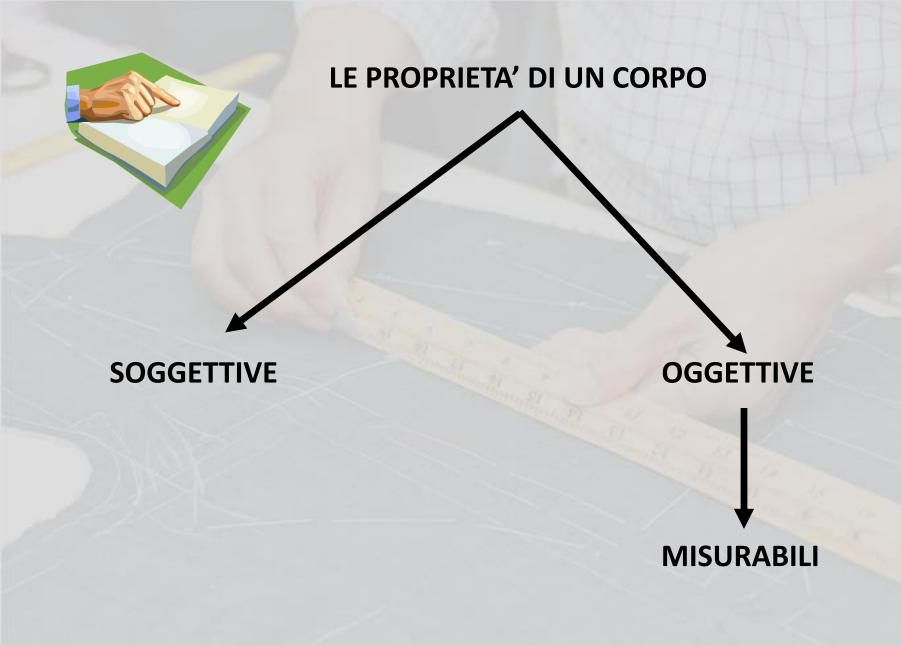
Prof. Stefano SPEZIA

CHE COS'E' LA FISICA?

FENOMENO FISICO

è un <u>AVVENIMENTO</u> che accade sotto i nostri occhi che non cambia la natura della materia interessata. A differenza di un fenomeno chimico che può cambiare la natura delle sostanze implicate nel fenomeno.

Il SOGGETTO di un fenomeno fisico è il <u>CORPO_FISICO</u>. Esempio: le nuvole sono il corpo fisico che interessa i fenomeni di scarica elettrica atmosferici, come i fulmini e i lampi.


- composto di più <u>PARTI</u> (<u>sistema</u>)


CORPO FISICO èun

OGGETTO

checompie/subisceAZIONI

- che ha determinate PROPRIETA'

PROPRIETA' SOGGETTIVE:

gusto, bellezza, freschezza, ecc..

PROPRIETA' OGGETTIVE:

massa, temperatura, diametro, ecc..

PROPRIETA' OGGETTIVA E MISURABILE

= GRANDEZZA FISICA

Una grandezza fisica è una proprietà oggettiva e misurabile di un fenomeno, corpo o sostanza che può essere distinta qualitativamente e misurata quantitativamente.

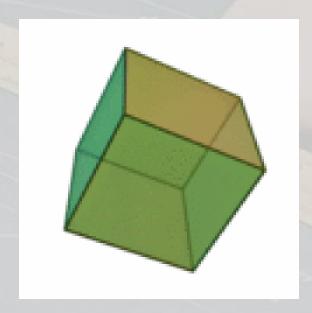
OMOGENEITA'

Relazione che si stabilisce fra grandezze.

Due grandezze si dicono OMOGENEE se fra di loro si possono istituire delle relazioni di confronto e di somma

Esempio: La distanza Terra – Luna è minore della distanza Terra - Sole

Le relazioni di confronto tra due grandezze fisiche consistono nelle relazioni di "minore", "maggiore" e di "eguale".


Es. Distanza Palermo/Siracusa = distanza Palermo/Catania + distanza Catania/Siracusa

Prima lunghezza + Seconda lunghezza = Lunghezza totale

2 lunghezze sono grandezze omogenee (dello stesso tipo)

<u>Capacità</u> e <u>volume</u> sono grandezze omogenee, e sono un esempio di grandezze omogenee di tipo diverso!

È più lungo 1 metro o 1 anno?

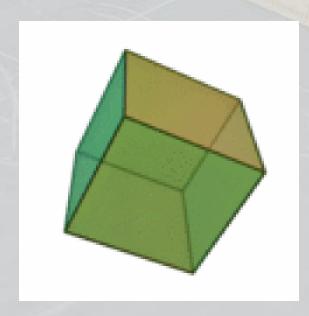
È una domanda priva di senso!

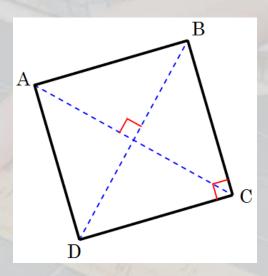
<u>Lunghezza</u> e <u>tempo</u> non sono omogenee (non si possono confrontare e nemmeno sommare/sottrarre)

Un tale mi venne a domandare: quante fragole crescono in mare? E io gli risposi di mia testa: quante sardine nella foresta? G. Rodari

FRA GRANDEZZE NON OMOGENEE si può comunque operare con la moltiplicazione/divisione

Esempio: massa/volume = densità




Si ottiene una nuova grandezza (detta DERIVATA)

In genere, moltiplicando/dividendo grandezze (sia omogenee che non), si ottengono nuove grandezze:

Esempio: lunghezza • lunghezza = area

Esempio: volume / area = lunghezza

Gerarchia nelle proprietà dei corpi fisici

FONDAMENTALI (mattoni di base)

GRANDEZZE

DERIVATE → nascono da operazioni fra grandezze fondamentali

MISURA DI UNA GRANDEZZA

MISURARE = attribuire un valore numerico ad una grandezza

La MISURA di una grandezza fisica G è espressa dall'operazione di prodotto

 $G = n \cdot u$

dove

n = numero (reale)

u = unità di misura (UDM)

n ci dice quante volte l'unità di misura u è contenuta nella grandezza G da misurare

UNITA' DI MISURA

Grandezza dello stesso tipo (omogenea) di quella che devo misurare, presa come campione, o riferimento.

La sua **MISURA** è

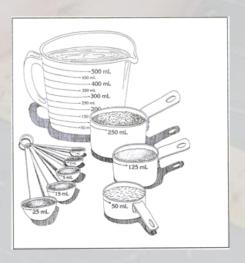
u = 1

LA SCELTA DI U

La scelta è arbitraria, soggettiva

Tuttavia, se cambio *u*, cambia il valore "*n*" di *G*, creando problemi pratici e di comunicazione!

3 CRITERI DI SCELTA DI u


Durata e stabilità temporale

Praticità

Universalità

→ SISTEMI DI <u>UDM</u>

SISTEMA INTERNAZIONALE (SI)

Metro (m) → udm della lunghezza

Chilogrammo (Kg) → udm della massa

Secondo (s) → udm del tempo (durata temporale)

Ampère (A) -> udm dell'intensità di corrente elettrica

Grado Kelvin → udm della temperatura

Candela (cd) → udm della intensità luminosa

Mole (mol) → udm della quantità di materia

SISTEMA cgs (1832 - 1874)

Centimetro (cm) → udm della lunghezza

Grammo (g) → udm della massa

Secondo (s) → udm del tempo (durata temporale)

Unità di misura del tempo è il secondo (s)

Nome	Simbolo	Valore in secondi		
anno	a	$3,15\times10^7 \text{ s}$		
giorno	d	86 400 s		
ora	h	3600 s		
minuto	min	60 s		
secondo	s	1 s		
millisecondo	ms	0,001 s		
microsecondo	μs	0,000 001 s		
nanosecondo	ns	0,000 000 001 s		

Tabella 2 Multipli e sottomultipli del secondo.

Alla fine del Settecento, in Francia, come unità di misura delle lunghezze è stato adottato il metro (simbolo m), definito come la quarantamilionesima parte della lunghezza del meridiano terrestre [figura]. Il campione del metro fu costruito tracciando due incisioni su una sbarra ai platino e iridio; è conservato nei Museo di Pesi e Misure di Sèvres (Parigi).

Nel 1983 ii metro e stato ridefinito facendo riferimento alle onde luminose: ii metro e ia distanza percorsa dalla luce nel vuoto in un trecentoomilionesimo di secondo; più precisamente in 1/299792458 secondi.

Misura di lunghezze

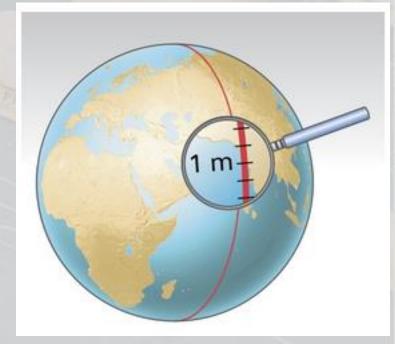


Figura: La vecchia definizione dei metro è legata alle dimensioni della Terra.

Multipli e sottomultipli del metro

Nome	Simbolo	Valore in metri
kilometro	km	1000 m
metro	m	1 m
decimetro	dm	0,1 m
centimetro	cm	0,01 m
millimetro	mm	0,001 m
micrometro	μm	0,000 001 m
nanometro	nm	0,000 000 001 m

Il metro è scomodo anche quando si parla di distanze astronomiche. In questo caso si utilizza l'anno—luce, cioè la distanza percorsa dalla luce in un anno; l'anno-luce equivale a 94500000000000 m, cioè a circa diecimila miliardi di chilometri.

Operazioni fra unità di misura omogenee

Confronto

Somma o differenza

$$8 \text{ m} + 5 \text{m} = 13 \text{ m}$$

$$7.5 \text{ s} - 4.1 \text{ s} = 3.4 \text{ s}$$

Moltiplicazione

• Divisione
$$3 \text{ m} : 4 \text{ m} = 0.75$$

$$3 \text{ m} \times 4 \text{ m} = 12 \text{ m}^2$$

matematica

Per fare il prodotto di due grandezze, bisogna moltiplicare sia i valori numerici sia le unità di misura:

$$(3 \text{ m}) \times (4 \text{ m}) =$$

= $(3 \times 4)(\text{m} \times \text{m}) =$
= 12 m^2 .

Operazioni fra unità di misura non omogenee

• Non ha senso confrontarle 😊

 Non ha senso sommarle o calcolarne la loro differenza ⁽³⁾

$$15 \text{ m} + 5 \text{ kg}$$

 $12 \text{ s} - 4 \text{ m}$

• Moltiplicazione e divisione sono permesse 😊

$$\frac{120 \text{ km}}{2,5 \text{ h}} = \frac{120}{2,5} \cdot \frac{\text{km}}{\text{h}} = 48 \text{ km/h}$$

Esercizio

La distanza Lcndra-Parigi è 344,01 km che corrisponde a 213,76 mi (miglia terrestri). Per calcolare il fattore di conversione che permette di passare da chilometri alle miglia basta fare la divisione 344,01 km/213,76 mi. Si trova che un miglio vale circa 1,609 km.

La distanza fra Las Vegas e Salt Lake City è 421 mi. A Quanti chilometri corrisponde?

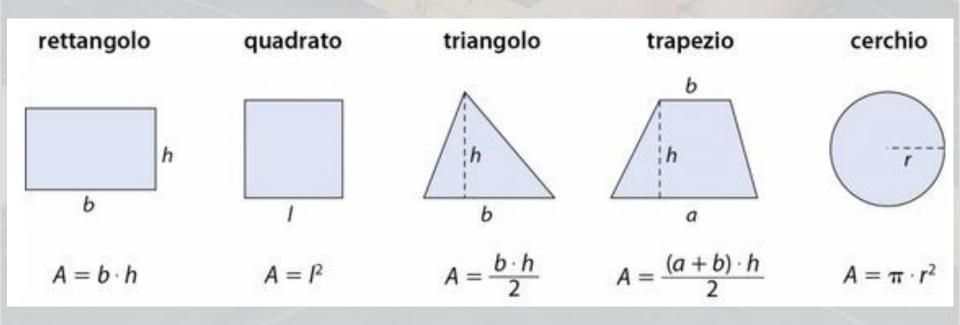
Esercizi sul S.I. e sulla misura delle lunghezze

(1) Vero o falso?

II chilogrammo è un'unità di misura.	[V] [F]
II chilogrammo è uno strumento di misura.	[V] [F]
Nella frase: "Dammi il metro". metro e lo strumento di misura.	[V] [F]
Nella frase: "Il tavolo è largo 1 metro", metro è lo strumento di misura.	[V] [F]
Nella frase: "Il tavolo è largo 1 metro", metro è l'unità di misura.	[V] [F]

(2) Indica con una crocetta le frasi scritte in forma corretta.

- [] II baule pesa kg 80.
- [] Il corridoio è lungo 5 m.
- [] Ho spruzzato sulle piante alcuni g di veleno.
- [] Bastano pochi grammi di sostanza.
- [] Mancano ancora 100 M all'arrivo.
- [] L'edificio è alto 50 rn.
- [] Il suo prezzo è é 30.
- [] Ho acquistato il CD a 12 €.
- [] Le ho regalato 20 euro.
- [] Ho perso euro 20.


Esercizi sul S.I. e sulla misura delle lunghezze

(3) Collega i simboli dei multipli e dei sottomultipli al loro nome.

M	kilo
m	centi
h	mega
d	etto
T	tera
da	giga
μ	micro
G	deca
k	deci
р	milli

La misura delle aree

L'area di una superficie è il prodotto di due lunghezze. Nel SI l'unità di misura delle aree è (metro) X (metro), cioè metro quadrato (simbolo m²).

L'unità di misura del volume è il metro cubo (simbolo m³), cioè un cubo che ha lo spigolo lungo 1 metro. Un metro cubo equivale a 1000 decimetri cubi [figura]

$$1 \text{ m}^3 = (10 \text{ dm}) \times (10 \text{ dm}) \times (10 \text{ dm}) = 1000 \text{ dm}^3$$

La misura dei volumi

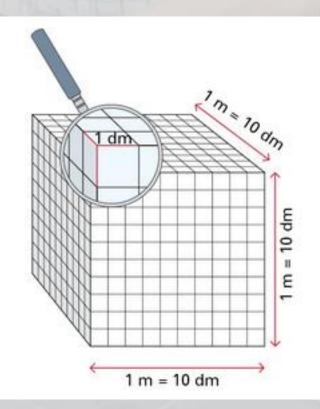
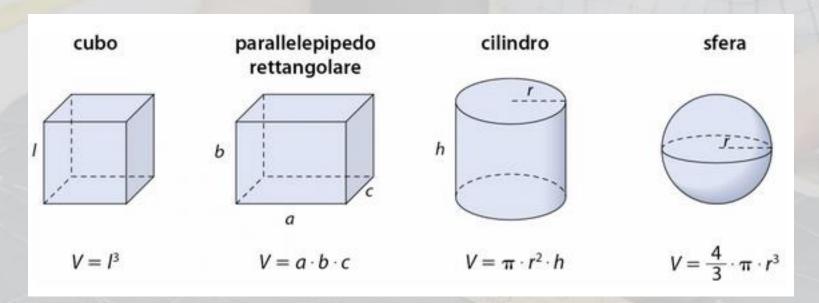
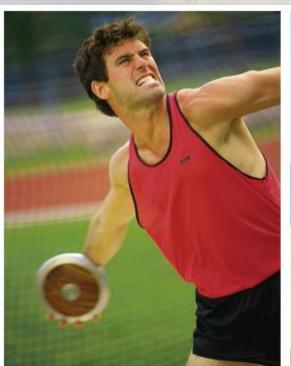



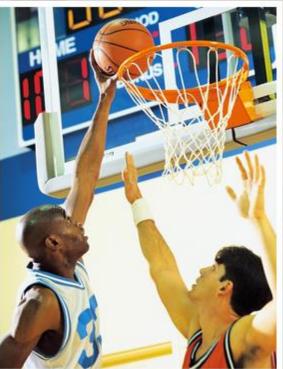
Figura: Ciascuno strato contiene 100 cubetti di volume 1 dm³. Poiché gli strati sono 10, in un metro cubo ci sono 100 x 10 cubetti di 1 dm³, cioè...

Calcolo di volumi di solidi

Con un cilindro graduato contiene dell'acqua, possiamo anche calcolare il volume di un solido irregolare (V), per esempio un fermacarte. Leggiamo il volume iniziale dell'acqua (V_i). leggiamo il volume finale (V_f) dopo che abbiamo messo il fermacarte nell'acqua, calcoliamo il volume del solido per differenza:

$$V = V_f - V_i$$


La massa e l'inerzia

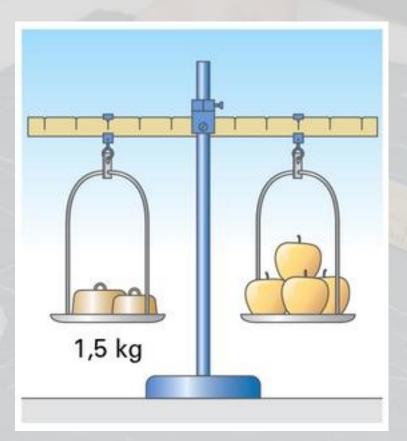

La massa ci dà un'idea di quanta materia è contenuta in un corpo.

Secondo il fisico inglese Isaac Newton, che introdusse il concetto di massa alla fine del diciassettesimo secolo, la massa di un corpo è strettamente legata alla sua inerzia, cioè alla sua tendenza a rimanere nella stato di quiete o di moto in cui si trova. A una inerzia maggiore corrisponde una massa maggiore [figura].

La massa è una proprietà intrinseca di ogni corpo; la massa non è il peso.

L'atleta che lancia il disco di acciaio compio uno sforzo notevole. Il giocatore di basket che lancia il pallone di gomma compio uno sforzo moderato.

Multipli e sottomultipli del kilogrammo (kg)


Nome	Simbolo	Equivalenza
tonnellata	t	1000 kg
kilogrammo	kg	1 kg
ettogrammo	hg	0,1 kg
decagrammo	dag	0,01 kg
grammo	g	0,001 kg
milligrammo	mg	0,000 001 kg

Il kilogrammo campione è un cilindro di platino-iridio che ha un diametro di 39 mm e un altezza di 39 mm.

La bilancia a bracci uguali e la costanza della massa

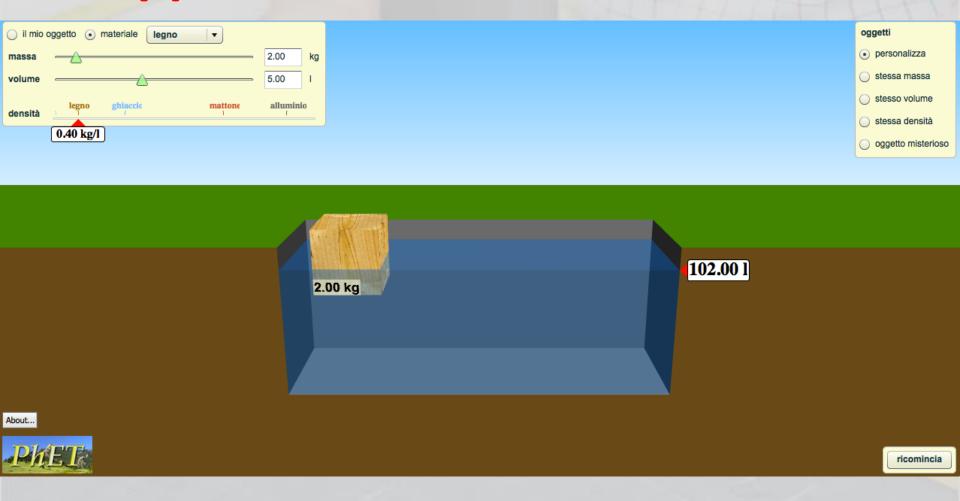
La massa di un corpo ha lo stesso valore numerico in qualunque parte dell'Universo e si misura con una bilancia a bracci uguali (o a piatti)!

La massa si conserva anche nelle reazioni chimiche, dove hanno luogo trasformazioni di sostanze. La conservazione della massa e un principio fondamentale della Chimica ed e stato formulato dal chimico francese Antoine Laurent Lavoisier (1743-1794).

Il peso e la massa

Massa e peso vengono spesso confusi

3 SCATOLE DA 80gC CAD. PESO SGOCCIOLATO 52g CAD.

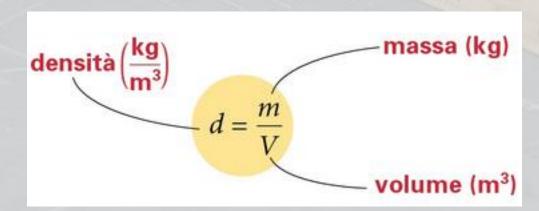

Il peso è la forza con cui ogni corpo viene attratto verso il centro della Terra. La massa è una caratteristica intrinseca del corpo.

Per esempio, una confezione di pasta ha la stessa massa al livello del mare, in montagna o su un'astronave. Il peso, invece, non è una caratteristica propria del corpo, perché dipende anche dal raggio e dalla massa della Terra.

Esercizi di riepilogo sulle equivalenze tra unità di misura

a. 971,6cm ² =	dam ²
b. 0,0058mg =	kg
c. 0,0092 1 =	m ³
d. $13000 \text{ dam}^3 = \dots$	cl
e. 47 hl =	mm ³
f. 0,03 cl =	dm ³
g. 132,7 ml =	
h. $9.0 \text{ hm}^3 = \dots$	
i. 655,4dam ³ =	cm ³
j. 0,00546kg =	
k. $0,004272 \text{ m}^3 = \dots$	
1. 63671 dam ³ =	cl
$m.23 \text{ mm}^3 = \dots$	
n. $0,803 \text{ dm}^3 = \dots$	c1
o. $704,4 \text{ dam}^3 = \dots$	ml
p. 1,92 dl=	hm ³

Applet: densità di una sostanza


https://phet.colorado.edu/sims/density-and-buoyancy/density_it.html

La densità di una sostanza

Figura 5 A parità di volume, le sostanze che contengono più massa sono più dense.

La densità di una sostanza è il rapporto tra la massa e il volume che occupa

Esempio

Se un oggetto ha la massa di 54 kg e occupa un volume di 0,02 m3, la sua densità vale:

$$d = \frac{54 \text{ kg}}{0.02 \text{ m}^3} = \left(\frac{54}{0.02}\right) \times (\text{kg/m}^3) = 2700 \text{ kg/m}^3$$

Nel rapporto fra due grandezze si fa il rapporto tra i valori e quello tra le unità di misura.

Solidi	Densità (kg/m³)	Liquidi	Densità (kg/m³)	Gas	Densità (kg/m³)
oro	19 300	acqua	1000	aria	1,29
piombo	11 400	benzina	720	ossigeno	1,43
argento	10 500	olio d'oliva	920	ozono	2,22
rame	8900	petrolio	790	metano	0,72
ferro	7800	glicerina	1260	idrogeno	0,09
alluminio	2700	mercurio	13 600	elio	0,178

Matematica: Le formule inverse

Ricaviamo la massa

La formula della densità

$$d = \frac{m}{V}$$

può essere utilizzata anche per calcolare la massa m (noti la densità e il volume)

o il volume V (note la densità e la massa).

Per ricavare la massa moltiplichiamo entrambi i membri dell'uguaglianza per il volume V:

$$d V = \frac{m}{V}V$$

a destra dell'uguaglianza possiamo semplificare il volume e rimane:

$$dV = m$$

Poiché vale la proprietà simmetrica dell'uguaglianza (se x = y allora anche y=x) possiamo scrivere:

$$m = d V$$

E se volessimo ricavare il volume V?

Basta dividere entrambi i membri della precedente uguaglianza per la densità d e poi semplificare a destra:

$$rac{m}{d} = rac{d\ V}{d}$$

e quindi possiamo scrivere:

$$V=rac{m}{d}$$

Per ricavare le due formule inverse abbiamo applicato la seguente regola:

Data un'uguaglianza, essa non cambia se moltiplichiamo o dividiamo entrambi i membri per la stessa quantità (diversa da zero).

Esercizi sulla densità di una sostanza

1) Su un giornale c'è scritto che la densità di una certa sostanza è 0,79 g/cm³. Esprimi la densità in unità del Sistema Internazionale (kg/cm³). (790 kg/m³)

2) Trasforma:

```
0.88 \text{ g/cm}^3 = \text{kg/m}^3

1,25 \text{ kg/dm}^3 = \text{g/cm}^3

13600 \text{ kg/m}^3 = \text{g/cm}^3

8800 \text{ kg/m}^3 = \text{kg/dm}^3
```

- 3) Scrivi vero o falso
- a)Se due sostanze hanno la stessa massa, allora ha densità maggiore quella che occupa il volume maggiore.
- b)Se due sostanze occupano lo stesso volume, allora ha densità maggiore quella che ha la massa maggiore.
- 4) 1 litro di acqua ha la massa di 1 kg. Che volume occupa 1 litro di acqua? Esprimi la densità dell'acqua in kg/m³, g/cm³, kg/dm³.

Esercizi sulla densità di una sostanza

- 5) Trovala densità di un oggetto di massa 0,3 kg e volume di 28,6 cm³. Di che materiale è fatto l'oggetto? (cerca il dato sulla tabella delle densità)
- 6) Una signora compra un ciondolo d'oro che occupa un volume di 5 cm3. Torna a casa, misura la massa e trova un valore di 90 g. Il suo ciondolo è di oro puro? (confronta il valore di densità da te trovato con quello della tabella del testo)
- 7) Trova il volume di un corpo di massa 39 g e di densità pari a 19,6 g/cm³.
- 8) Trova la massa di un corpo di volume 1,5 m³, e densità pari a 0,8 g/cm³.
- 9) Descrivi brevemente come faresti per misurare la densità di un oggetto di forma irregolare, per esempio di una caffettiera.
- 10) Un mazzo di chiavi di ferro ha una massa di 156 g. Se lo immergiamo in un recipiente d'acqua, di quanto aumenta il volume dell'acqua?

Seguitemi sulla pagina Web all'indirizzo:

https://stefanospezia.wixsite.com/prof/